dobrosad-pitomnik.ru – Ландшафтный дизайн вашего участка

Ландшафтный дизайн вашего участка

Каталог файлов по химии. Каталог файлов по химии Химические свойства белков

Белки - природные полипептиды с огромной молекулярной массой. Они входят в состав всех живых организмов и выполняют различные биологические функции.

Строение белка.

У белков существует 4 уровня строения:

  • первичная структура белка - линейная последовательность аминокислот в полипептидной цепи, свернутых в пространстве:
  • вторичная структура белка - конформация полипептидной цепи, т.к. скручивание в пространстве за счет водородных связей между NH и СО группами. Есть 2 способа укладки: α -спираль и β - структура.
  • третичная структура белка - это трехмерное представление закрученной α -спираль или β -структуры в пространстве:

Эта структура образуется за счет дисульфидных мостиков -S-S- между цистеиновыми остатками. В образовании такой структуры участвуют противоположно заряженные ионы.

  • четвертичная структура белка образуется за счет взаимодействия между разными полипептидными цепями:

Синтез белка.

В основе синтеза лежит твердофазный метод, в котором первая аминокислота закрепляется на полимерном носителе, а к ней последовательно подшиваются новые аминокислоты. После полимер отделяют от полипептидной цепи.

Физические свойства белка.

Физические свойства белка определяются строением, поэтому белки делят на глобулярные (растворимые в воде) и фибриллярные (нерастворимые в воде).

Химические свойства белков.

1. Денатурация белка (разрушение вторичной и третичной структуры с сохранением первичной). Пример денатурации - свертывание яичных белков при варке яиц.

2. Гидролиз белков - необратимое разрушение первичной структуры в кислом или щелочном растворе с образованием аминокислот. Так можно установить количественный состав белков.

3. Качественные реакции:

Биуретовая реакция - взаимодействие пептидной связи и солей меди (II) в щелочном растворе. По окончанию реакции раствор окрашивается в фиолетовый цвет.

Ксантопротеиновая реакция - при реакции с азотной кислотой наблюдается желтое окрашивание.

Биологическое значение белка.

1. Белки - строительный материал, из него построены мышцы, кости, ткани.

2. Белки - рецепторы. Передают и воспринимают сигнал, поступающих от соседних клеток из окружающей среды.

3. Белки играют важную роль в иммунной системе организма.

4. Белки выполняют транспортные функции и переносят молекулы или ионы в место синтеза или накопления. (Гемоглобин переносит кислород к тканям.)

5. Белки - катализаторы - ферменты. Это очень мощные селективные катализаторы, которые ускоряют реакции в миллионы раз.

Есть ряд аминокислот, которые не могут синтезироваться в организме - незаменимые , их получают только с пищей: тизин, фенилаланин, метинин, валин, лейцин, триптофан, изолейцин, треонин.

Ферментативный гидролиз белков происходит под действием протеолитических ферментов (протеаз). Они классифицируются на эндо- и экзопептидазы. Ферменты не имеют строгой субстратной специфичности и действуют на все денатурированные и многие нативные белки, расщепляя в них пептидные связи -СО-NH-.

Эндопептидазы (протеиназы) - гидролизуют непосредственно белок по внутренним пептидным связям. В результате образуется большое количество полипептидов и мало свободных аминокислот.

Оптимальные условия действия кислых протеиназ: рН 4,5-5,0, температура 45-50 °С.

Экзопептидазы (пептидазы) действуют, главным образом, на полипептиды и пептиды, разрывая пептидную связь с конца. Основные продукты гидролиза - аминокислоты. Данную группу ферментов делят на амино-, карбокси-, дипептидазы.

Аминопептидазы катализируют гидролиз пептидной связи, находящейся рядом со свободной аминогруппой.

H2N - СН - С - - NH - СН - С....

Карбоксипептидазы осуществляют гидролиз пептидной связи, находящейся рядом со свободной карбоксильной группой.

СО -NH- С - Н

Дипептизады катализируют гидролитическое расщепление дипептидов на свободные аминокислоты. Дипептидазы расщепляют только такие пептидные связи, по соседству с которыми находятся одновременно свободные карбоксильная и аминная группы.

дипептидаза

NH2CH2CONHCH2COOH + Н2О 2CH2NH2COOH

Глицин-глицин Гликокол

Оптимальные условия действия: рН 7-8, температура 40-50 оС. Исключение составляет карбоксипептидаза, проявляющая максимальную активность при температуре 50 оС и рН 5,2.

Гидролиз белковых веществ в консервной промышленности необходим при производстве осветленных соков.

Преимущества ферментативного способа получения белковых гидролизатов

При производстве биологически активных веществ из белоксодержащего сырья наиболее важным является его глубокая переработка, предусматривающая расщепление белковых молекул до составляющих мономеров. Перспективным в этом отношении является гидролиз белкового сырья с целью производства белковых гидролизатов - продуктов, содержащих ценные биологически активные соединения: полипептиды и свободные аминокислоты. В качестве сырья для производства белковых гидролизатов могут быть использованы любые полноценные по аминокислотному составу природные белки, источниками которых являются кровь и ее составные компоненты; ткани и органы животных и растений; отходы молочной и пищевой промышленности; ветеринарные конфискаты; пищевые и малоценные в пищевом отношении продукты, получаемые при переработке различных видов животных, птицы, рыбы; отходы производства мясокомбинатов и клеевых заводов и др. При получении белковых гидролизатов для медицинских и ветеринарных целей служат, в основном, белки животного происхождения: крови, мышечной ткани и внутренних органов, белковые оболочки, а также белки молочной сыворотки.

Проблема гидролиза белков и ее практическая реализация с давних пор привлекают внимание исследователей. На основе гидролиза белков получают различные препараты, широко применяемые в практике: как кровезаменители и для парентерального питания в медицине; для компенсации белкового дефицита, повышения резистентности и улучшения развития молодняка животных в ветеринарии; как источник аминокислот и пептидов для бактериальных и культуральных питательных сред в биотехнологии; в пищевой промышленности, парфюмерии. Качество и свойства белковых гидролизатов, предназначенных для различного применения, обусловлены исходным сырьем, способом гидролиза и последующей обработкой полученного продукта.

Варьирование способов получения белковых гидролизатов позволяет получать продукты с заданными свойствами. В зависимости от содержания аминокислот и наличия полипептидов в диапазоне соответствующей молекулярной массы может быть определена область наиболее эффективного использования гидролизатов. К белковым гидролизатам, получаемым для различных целей, предъявляются разные требования, зависящие в первую очередь от состава гидролизата. Так, в медицине желательно применение гидролизатов, содержащих 15...20% свободных аминокислот; в ветеринарной практике для повышения естественной резистентности молодняка преимущественным является содержание в гидролизатах пептидов (70...80%); для пищевых целей важными являются органолептические свойства получаемых продуктов. Но основным требованием при использовании белковых гидролизатов в различных областях является сбалансированность по аминокислотному составу.

Гидролиз белка можно осуществить тремя путями: действием щелочей, кислот и протеолитических ферментов. При щелочном гидролизе белков образуются остатки лантионина и лизиноаланина, которые являются токсичными для организма человека и животных. При таком гидролизе разрушаются аргинин, лизин и цистин, поэтому для получения гидролизатов его практически не используют. Кислотный гидролиз белка является широко распространенным способом. Чаще всего белок гидролизуют серной или соляной кислотой. В зависимости от концентрации используемой кислоты и температуры гидролиза время процесса может изменяться от 3 до 24-х часов. Гидролиз серной кислотой проводят 3...5 часов при температуре 100...130 оС и давлении 2...3 атмосферы; соляной - в течение 5...24 ч при температуре кипения раствора под небольшим давлением.

При кислотном гидролизе достигается большая глубина расщепления белка и исключается возможность бактериального загрязнения гидролизата. Это особенно важно в медицине, где гидролизаты применяются, в основном, парентерально и необходимо исключить анафилактогенность, пирогенность и другие нежелательные последствия. В медицинской практике широко применяются кислотные гидролизаты: аминокровин, гидролизин Л-103, ЦОЛИПК, инфузамин, геммос и другие.

Недостатком кислотного гидролиза является полное разрушение триптофана, частичное оксиаминокислот (серина и треонина), дезаминирование амидных связей аспарагина и глутамина с образованием аммиачного азота, разрушение витаминов, а также образование гуминовых веществ, отделение которых затруднительно. Кроме того, при нейтрализации кислотных гидролизатов образуется большое количество солей: хлоридов или сульфатов. Последние являются особенно токсичными для организма. Поэтому кислотные гидролизаты нуждаются в последующей очистке, для чего в производстве обычно используется ионообменная хроматография.

Во избежание разрушения лабильных аминокислот в процессе получения кислотных гидролизатов, некоторые исследователи использовали мягкие режимы гидролиза в атмосфере инертного газа, а также добавляли к реакционной смеси антиоксиданты, тиоспирты или производные индола. Кислотный и щелочной гидролиз имеют, кроме указанных, еще существенные ограничения, связанные с реактивностью среды, что приводит к быстрой коррозии оборудования и вызывает необходимость соблюдения жестких требований техники безопасности для операторов. Таким образом, технология кислотного гидролиза достаточно трудоемка и требует использования сложной аппаратуры (ионообменные колонки, ультрамембраны и т.п.) и дополнительных этапов очистки получаемых препаратов.

Проведены исследования по разработке электрохимической ферментативной технологии получения гидролизатов. Использование этой технологии позволяет исключить из процесса применение кислот и щелочей, т. к. рН среды обеспечивается в результате электролиза обрабатываемой среды, содержащей незначительное количество соли. Это, в свою очередь, позволяет автоматизировать процесс и обеспечить более тонкий и оперативный контроль технологических параметров.

Как известно, в организме белок под действием пищеварительных ферментов расщепляется до пептидов и аминокислот. Аналогичное расщепление можно провести и вне организма. Для этого к белковому веществу (субстрату) добавляют ткань поджелудочной железы, слизистую оболочку желудка или кишечника, чистые ферменты (пепсин, трипсин, химотрипсин) или ферментные препараты микробного синтеза. Такой способ расщепления белка называется ферментативным, а полученный гидролизат - ферментативным гидролизатом. Ферментативный способ гидролиза является более предпочтительным, по сравнению с химическими методами, т. к. проводится в "мягких" условиях (при температуре 35...50оС и атмосферном давлении). Преимуществом ферментативного гидролиза является то обстоятельство, что во время его проведения аминокислоты практически не разрушаются и не вступают в дополнительные реакции (рацемизация и другие). При этом образуется сложная смесь продуктов распада белков с различной молекулярной массой, соотношение которых зависит от свойств применяемого фермента, используемого сырья и условий проведения процесса. Полученные гидролизаты содержат 10...15% общего азота и 3,0...6,0% аминного азота. Технология его проведения относительно проста.

Таким образом, по сравнению с химическими технологиями ферментативный способ получения гидролизатов обладает существенными достоинствами, главными из которых являются: доступность и простота проведения, незначительная энергозатратность и экологическая безопасность.

ОПРЕДЕЛЕНИЕ

Белки - это высокомолекулярные соединения. Их условно можно отнести к группе полимеров.

Мономерными звеньями белков выступают пептиды, которые состоят из аминокислот. Если вещество содержит более, чем 100 аминокислотных остатков его классифицируют как протеин, менее 100 - это ещё пептид. Образование белков (пептидная связь) схематично можно изобразить следующим образом:

Гидролиз белков

Белки способны частично гидролизоваться. Если представить, что гидролиз протекает до конца, т.е. полностью, то в качестве продуктов реакции получается смесь аминокислот. Кроме этих веществ в растворе после гидролиза были найдены углеводы, пиримидиновые и пуриновые основания, ортофосфорная кислота. Гидролиз белков протекает при определенных условиях: кипячение в растворе кислоты или щелочи.

Если в составе белков имеются амидные связи за счет наличия аминокислот с разветвленными боковыми радикалами, создающими стерические препятствия, как например в лейцине или валине, то гидролиз невозможен.

Если белок распадается на составляющие в щелочной среде, то гидролиз проводят в кислой и наоборот.

Условно уравнение реакции гидролиза белков можно записать как:


Для чего нужен гидролиз белков?

Поскольку белки являются высокомолекулярными соединения, то они могут плохо восприниматься организмом, так как любой продукт питания, растительного или животного происхождения имеет в составе белки. Гидролиз разрушает белки до низкомолекулярных продуктов, поэтому его используют для ускорения усвояемости белков (спортивное питание), снижения аллергических реакций (детское питание, в особенности молочные смеси), получения аминокислот.

Примеры решения задач

ПРИМЕР 1

В процессе приготовления и кулинарной обработки пищи белки могут претерпевать разнообразные превращения.

Меланоидиновая реакция

Растворимые аминокислоты (глицин, аланин, аспарагин и др.) энергично реагируют с сахарами, имеющими свободную карбонильную группу (ксилоза, фруктоза, глюкоза, мальтоза). Меланоидиновая реакция идет наиболее легко при молярном соотношении между аминокислотами и сахарами 1:2.

Аминокислота реагирует с сахаром по следующей схеме:

CH 2 OH-(CHOH) 4 -COH + H 2 N-CH 2 -COOH --------

глюкоза глицин

---------- CH 2 OH-(CHOH) 4 -C-NH-CH 2 -COOH

Менее активно действуют слаборастворимые кислоты (цистин, тирозин). Меланоидиновая реакция сопровождается образованием промежуточных соединений: альдегидов, циклических группировок фурфурольного, а затем и пиррольного характера. Меланоидиновые реакции активируются при повышенных температурах, особенно в случае многократного подогрева.

В результате этой реакции происходит потемнение корки белого хлеба: при выпечке аминокислоты на поверхности хлеба реагируют с сахарами, образовавшимися в процессе брожения теста.

Меланоидины могут также образовываться в процессе хранения консервов.

Гидролиз белков

Он может происходить под влиянием ферментов, кислот или щелочей. Этим способом можно получить любую из аминокислот, входящую в состав белков. Практическое значение имеет гидролиз биомассы дрожжей,выращенных на углеводородсодержащем сырье, и включающей до 40 % белков. Сырьем для получения биомассы микробиологическим путем могут служить также диоксид углерода, спирт, парафины нефти, природный газ, отходы дерево-перерабатывающей промышленности. Полученные из белковых гидролизатов аминокислоты разделяют методами ионообменной хроматографии, электрофореза и газожидкостной хроматографии.

Гидратация белков

Белки связывают воду, т.е. проявляют гидрофильные свойства. При этом они набухают, увеличивается их масса и объем. Набухание белка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в их составе и расположенные на поверхности белковой макромолекулы гидрофильные -СО-NН- (пептидная связь), аминогруппы -NН 2 , карбоксильные -СООН- группы притягивают к себе молекулы воды, строго ориентируя их на поверхности молекулы.

Окружающие белковые глобулы гидратная (водная) оболочка препятствует агрегации, а следовательно, способствует устойчивости растворов белка и препятствуют его осаждению.

H 3 N + -(CH 2)n-COOH + NH 3 -(CH 2)n-COO - NH 2 -(CH 2)n-COO -

изоэлектрическая точка

рН=1,0 рН=7,0 рН=11,0

В изоэлектрической точке (см. схему) белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. При изменении рН среды молекула белка становится заряженной и его гидратационная способность меняется. При ограниченном набухании концентрированные белковые растворы образуют сложные системы, называемые студиями. Глобулярные белки могут полностью гидратироваться, растворяясь в воде (например, белки молока), образуя растворы с невысокой концентрацией.

Гидрофильные свойства белков, т.е. их способность образовывать студии, стабилизировать суспензии, эмульсии и пены имеют большое значение в пищевой промышленности. Различная гидрофильность клейковинных белков - один из признаков, характеризующих качество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Гидрофильность белков зерна и муки играет большую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебопекарном производстве, при изготовлении мучных кондитерских изделий, представляет собой набухший в воде белок, концентрированный студень, содержащий зерна крахмала.

Как и другие химические реакции, гидролиз белков сопровождается обменом электронами между определенными атомами реагирующих молекул. Без катализатора этот обмен протекает настолько медленно, что его невозможно измерить. Процесс можно ускорить, добавив кислоты или основания; первые дают при диссоциации Н-ионы, вторые - ОН-ионы. Кислоты и основания играют роль истинных катализаторов: они не расходуются в ходе реакции.

При кипячении белка с концентрированной кислотой происходит его полный распад на свободные аминокислоты. Если бы такой распад происходил в живой клетке, это, естественно приводило бы к ее гибели. Под действием протерлитических ферментов белки также распадаются, и даже еще быстрее, но без малейшего вреда для организма. И в то время как Н-ионы действуют без разбора на все белки и на все пептидные связи в любом белке, протеолитические ферменты отличаются специфичностью и разрывают только определенные связи.

Протеолитические ферменты сами являются белками. Чем же протеолитический фермент отличается от белка-субстрата (субстратом называют соединение, которое является объектом действия фермента)? Как протеолитический фермент проявляет свою каталитическую активность, не разрушая при этом ни себя, ни клетку? Ответ на эти основные вопросы помог бы понять механизм действия всех ферментов. С тех пор как 30 лет назад М. Кунитц впервые выделил в кристаллическом виде трипсин, протеолитические ферменты служат моделями для изучения зависимости между белковой структурой и ферментативной функцией.

Протеолитические ферменты пищеварительного тракта связаны с одной из важнейших функций человеческого организма - усвоением питательных веществ. Вот почему эти ферменты уже давно служат объектом исследования; в этом отношении впереди них стоят, пожалуй, только ферменты дрожжей, участвующие в спиртовом брожении. Лучше всех пищеварительных ферментов изучены трипсин, химотрипсин и карбокси-пептидазы (эти ферменты выделяются поджелудочной железой). Именно» на их примере мы и рассмотрим все то, что сейчас известно о специфичности, структуре и характере действия протеолитических ферментов.

Протеолитические ферменты поджелудочной железы синтезируются в форме предшественников - зимогенов - и хранятся во внутриклеточных тельцах, так называемых зимогеновых гранулах. Зимогены лишены ферментативной активности и, следовательно, не могут действовать разрушительно на белковые компоненты ткани, в которой они образовались. Поступая в тонкий кишечник, зимогены активируются под действием другого фермента; при этом в структуре их молекулы происходят небольшие, но очень важные изменения. Более подробно мы остановимся на этих изменениях позже.

«Молекулы и клетки», под ред. Г.М.Франка


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении